Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(10): 2830-2846, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315161

RESUMO

We investigated the potential mechanisms driving habitat-linked genetic divergence within a bird species endemic to a single 250-km2 island. The island scrub-jay (Aphelocoma insularis) exhibits microgeographic divergence in bill morphology across pine-oak ecotones on Santa Cruz Island, California (USA), similar to adaptive differences described in mainland congeners over much larger geographic scales. To test whether individuals exhibit genetic differentiation related to habitat type and divergence in bill length, we genotyped over 3000 single nucleotide polymorphisms in 123 adult island scrub-jay males from across Santa Cruz Island using restriction site-associated DNA sequencing. Neutral landscape genomic analyses revealed that genome-wide genetic differentiation was primarily related to geographic distance and differences in habitat composition. We also found 168 putatively adaptive loci associated with habitat type using multivariate redundancy analysis while controlling for spatial effects. Finally, two genome-wide association analyses revealed a polygenic basis to variation in bill length with multiple loci detected in or near genes known to affect bill morphology in other birds. Our findings support the hypothesis that divergent selection at microgeographic scales can cause adaptive divergence in the presence of ongoing gene flow.


Assuntos
Estudo de Associação Genômica Ampla , Passeriformes , Animais , Ecossistema , Fluxo Gênico , Variação Genética , Genética Populacional , Humanos , Masculino , Passeriformes/genética , Seleção Genética
2.
Nat Ecol Evol ; 6(2): 174-182, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087217

RESUMO

Hunting can fundamentally alter wildlife population dynamics but the consequences of hunting on pathogen transmission and evolution remain poorly understood. Here, we present a study that leverages a unique landscape-scale quasi-experiment coupled with pathogen-transmission tracing, network simulation and phylodynamics to provide insights into how hunting shapes feline immunodeficiency virus (FIV) dynamics in puma (Puma concolor). We show that removing hunting pressure enhances the role of males in transmission, increases the viral population growth rate and increases the role of evolutionary forces on the pathogen compared to when hunting was reinstated. Changes in transmission observed with the removal of hunting could be linked to short-term social changes while the male puma population increased. These findings are supported through comparison with a region with stable hunting management over the same time period. This study shows that routine wildlife management can have impacts on pathogen transmission and evolution not previously considered.


Assuntos
Vírus da Imunodeficiência Felina , Puma , Animais , Animais Selvagens , Feminino , Vírus da Imunodeficiência Felina/fisiologia , Masculino , Comportamento Predatório , Puma/fisiologia , Puma/virologia , Fenômenos Fisiológicos Virais
3.
Mol Ecol ; 31(2): 603-619, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704295

RESUMO

Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east-west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation-based and environmental association analyses coupled with genome-wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g., BMP, CaM, Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.


Assuntos
Fluxo Gênico , Pardais , Animais , Ilhas Anglo-Normandas , Genética Populacional , Estudo de Associação Genômica Ampla , Seleção Genética , Pardais/genética
4.
J Anim Ecol ; 91(6): 1222-1238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34048026

RESUMO

Temperature is a critical driver of ectotherm life-history strategies, whereby a warmer environment is associated with increased growth, reduced longevity and accelerated senescence. Increasing evidence indicates that thermal adaptation may underlie such life-history shifts in wild populations. Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) can help uncover the molecular mechanisms of temperature-driven variation in growth, longevity and senescence. However, our understanding of these mechanisms is still limited, which reduces our ability to predict the response of non-model ectotherms to global temperature change. In this study, we examined the potential role of thermal adaptation in clinal shifts of life-history traits (i.e. life span, senescence rate and recruitment) in the Columbia spotted frog Rana luteiventris along a broad temperature gradient in the western United States. We took advantage of extensive capture-recapture datasets of 20,033 marked individuals from eight populations surveyed annually for 14-18 years to examine how mean annual temperature and precipitation influenced demographic parameters (i.e. adult survival, life span, senescence rate, recruitment and population growth). After showing that temperature was the main climatic predictor influencing demography, we used RAD-seq data (50,829 SNPs and 6,599 putative CNVs) generated for 352 individuals from 31 breeding sites to identify the genomic signatures of thermal adaptation. Our results showed that temperature was negatively associated with annual adult survival and reproductive life span and positively associated with senescence rate. By contrast, recruitment increased with temperature, promoting the long-term viability of most populations. These temperature-dependent demographic changes were associated with strong genomic signatures of thermal adaptation. We identified 148 SNP candidates associated with temperature including three SNPs located within protein-coding genes regulating resistance to cold and hypoxia, immunity and reproduction in ranids. We also identified 39 CNV candidates (including within 38 transposable elements) for which normalized read depth was associated with temperature. Our study indicates that both SNPs and structural variants are associated with temperature and could eventually be found to play a functional role in clinal shifts in senescence rate and life-history strategies in R. luteiventris. These results highlight the potential role of different sources of molecular variation in the response of ectotherms to environmental temperature variation in the context of global warming.


Assuntos
Anuros , Biodiversidade , Aclimatação , Animais , Genômica , Temperatura
5.
Commun Biol ; 4(1): 12, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398025

RESUMO

Urban expansion can fundamentally alter wildlife movement and gene flow, but how urbanization alters pathogen spread is poorly understood. Here, we combine high resolution host and viral genomic data with landscape variables to examine the context of viral spread in puma (Puma concolor) from two contrasting regions: one bounded by the wildland urban interface (WUI) and one unbounded with minimal anthropogenic development (UB). We found landscape variables and host gene flow explained significant amounts of variation of feline immunodeficiency virus (FIV) spread in the WUI, but not in the unbounded region. The most important predictors of viral spread also differed; host spatial proximity, host relatedness, and mountain ranges played a role in FIV spread in the WUI, whereas roads might have facilitated viral spread in the unbounded region. Our research demonstrates how anthropogenic landscapes can alter pathogen spread, providing a more nuanced understanding of host-pathogen relationships to inform disease ecology in free-ranging species.


Assuntos
Vírus da Imunodeficiência Felina/genética , Infecções por Lentivirus/veterinária , Puma/microbiologia , Urbanização , Animais , Colorado/epidemiologia , Feminino , Fluxo Gênico , Infecções por Lentivirus/epidemiologia , Infecções por Lentivirus/transmissão , Masculino , Filogeografia , Puma/genética
6.
Evol Appl ; 9(7): 879-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27468306

RESUMO

Genetic rescue, an increase in population growth owing to the infusion of new alleles, can aid the persistence of small populations. Its use as a management tool is limited by a lack of empirical data geared toward predicting effects of gene flow on local adaptation and demography. Experimental translocations provide an ideal opportunity to monitor the demographic consequences of gene flow. In this study we take advantage of two experimental introductions of Trinidadian guppies to test the effects of gene flow on downstream native populations. We individually marked guppies from the native populations to monitor population dynamics for 3 months before and 26 months after gene flow. We genotyped all individuals caught during the first 17 months at microsatellite loci to classify individuals by their genetic ancestry: native, immigrant, F1 hybrid, F2 hybrid, or backcross. Our study documents a combination of demographic and genetic rescue over multiple generations under fully natural conditions. Within both recipient populations, we found substantial and long-term increases in population size that could be attributed to high survival and recruitment caused by immigration and gene flow from the introduction sites. Our results suggest that low levels of gene flow, even from a divergent ecotype, can provide a substantial demographic boost to small populations, which may allow them to withstand environmental stochasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...